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The notable increase in the global average surface temperature relative to pre-industrial 

levels has motivated enhanced efforts to reduce greenhouse gas emissions. Although emissions 

of both carbon dioxide and methane have contributed to the problem, emissions of methane 

are especially concerning due to their much larger global warming potential. Therefore, 

companies generally take steps to avoid the unrestrained release of methane into the 

atmosphere. Natural gas flaring is one of these mitigating practices and involves burning 

excess natural gas that must be disposed of for economic, safety, or operational reasons. 

However, gas flares often operate with low combustion efficiency and unburned methane is 

nonetheless vented to the atmosphere as a result. Furthermore, in the event that flameout 

occurs, exorbitant methane emissions will ensue and defeat the purpose of the gas flare 

altogether. This study presents a data analytics methodology for detecting precursors to 

flameout in natural gas flares. It involves first filtering the data with a time series model and 

then identifying statistical irregularities using a fault detection algorithm. The data analytics 

method was applied to quantitative temperature and acoustics measurements that were taken 

in an industry relevant gas flare test rig. Specifically, (4) 20 kHz microphones and H2O 

absorption spectroscopy data acquired at 1 kHz were used to monitor the flare rig’s 

combustion process. These data provided a clear indication of flameout. Furthermore, the 

data analytics method identified local extinction processes prior to the occurrence of flameout, 

which are the underlying physical phenomena behind incomplete combustion. These local 

extinction processes increased in frequency as flameout was approached. On the other hand, 

the data analytics method did not detect irregular combustion processes in the data for stable 

burning flames. These results have implications for gas flare monitoring as the feedback from 

the data analytics method would help ensure that methane emissions from either flameout or 

incomplete combustion are avoided. 

I. Nomenclature 

ai = Residuals from the ARIMA model 

b = Rational subgroup size 

ARIMA = Autoregressive Integrated Moving Average 

DOE = Department of Energy 

EPA = Environmental Protection Agency 

EWRMS = Exponentially Weighted Root Mean Squared-error 

FO = Flameout 

HEI = High Energy Ignition 

GWP = Global Warming Potential 
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IGARCH = Integrated Generalized Autoregressive Conditional Heteroscedasticity 

OGI = Optical gas imaging 

Tn = Total number of samples in a time series 

V̇CH4 = Volume flow rate of methane 

 

Zi = Array of curated test data 

α0 = Constant in the IGARCH model 

α1 = Coefficient in the IGARCH model 

𝛽 = Predetermined false alarm rate 

γ = Constant governing the amount of weight placed on the memory of Sk 

η1 = Coefficient in the IGARCH model 

θ1 = Coefficient in the ARIMA model 

μ = Mean of ∇𝑋𝑖  values 

𝜎𝑖
2 = Conditional variance 

ϕ1 = Coefficient in the ARIMA model 

ϕ2 = Coefficient in the ARIMA model 

 

∇𝑋𝑖 = Difference in the absorption temperature data at consecutive sampling intervals 

II. Introduction 

Significant reductions in greenhouse gas (GHG) emissions are required in order to prevent a 2–11.5 °F increase in the 

global average temperature by the year 2100 [1]. Without effective interventions, deleterious ecological effects such 

as forest fires, droughts, heat waves, diminished forest populations, and a substantial rise in the average sea level can 

be expected to occur. Although emissions of both carbon dioxide and methane have contributed to this changing state 

of the global climate, emissions of methane are especially concerning due to their much larger global warming 

potential (GWP). Methane has a GWP that is 73 times greater than CO2 over a 20 year period and 28 times greater 

over a 100 year period [2]. Unlike CO2, methane is not a product of stoichiometric combustion reactions and therefore 

emissions of methane from combustion systems are largely preventable. Since methane experiences its largest global 

warming potential shortly after it is emitted into the atmosphere, reducing methane emissions is often regarded as the 

fastest way to immediately mitigate the advancement of climate change.  

 
Petrochemical plants, refineries, and many other industries commonly use gas flaring as a mitigating practice to avoid 

the unrestrained release of methane into the atmosphere. However, gas flares often operate with low combustion 

efficiency and unburned methane is nonetheless vented to the atmosphere as a result. Furthermore, in the event that 

flameout (FO) occurs, exorbitant methane emissions will ensue and defeat the purpose of the gas flare altogether. The 

United States’ Environmental Protection Agency (EPA) recognizes the potential for gas flares to emit unburned 

methane at dangerously high levels. Therefore, On December 2, 2023, the EPA issued the Controlling Air Pollution 

from Oil and Natural Gas Operations Ruling [3], which has significant implications for the future of flaring in the 

United States. Specifically, the rule bans routine flaring of natural gas at the sites of new oil wells and mandates 

regular monitoring of existing flares. Furthermore, states are required to submit methane reduction plans within two 

years of the ruling and compliance is required during the subsequent three years. The flare monitoring requirements 

in the EPA’s rule will involve monthly inspections of existing gas flares for 95% combustion efficiency, continuous 

burning of the pilot flame(s), and the absence of visible emissions. A significant element of the EPA’s December 2023 

rule is that it encourages the development of alternative technologies for flare monitoring. Users of existing flares are 

given the option to replace the standard methane detection method (i.e., optical gas imaging cameras) with an 

alternative method that consistently achieves 95% combustion efficiency [3]. This ruling signals a move towards 

reduced flaring practices and motivates advanced monitoring technologies in defense of the flaring industry. 

Therefore, technologies are needed that can quickly detect a decrease in combustion efficiency and then modify the 

operation of a gas flare to prevent further methane emissions. 

 

In order to accomplish the EPA’s climate goals, effective flare monitoring technologies must also include the ability 

to accurately detect flameout. Unfortunately, this capability is often lacking in practice as a recent study [4] indicated 

that 5% of all flares in Texas’ Permian Basin were actually operating unlit. In a review article summarizing the 

extensive literature on premixed bluff-body stabilized flames, Shanbhogue et al. [5] describe flameout (FO) as the 

culmination of a series of localized extinction and unstable fluid mechanic processes that ultimately lead to the 
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complete loss of the flame. It is these precursors to flameout that decrease a flame’s combustion efficiency. In a key 

study that shaped this phenomenological model, Nair and Lieuwen [6] observed instances of local flame extinction 

that were linked to the instantaneous flame stretch rate exceeding the extinction stretch rate. However, they found that 

the flame and flow topology generally maintained the same shape and structure as it did during stable burning. With 

further reductions in the equivalence ratio, these localized extinction processes became more common until the 

previously symmetric flow field underlying Nair and Lieuwen’s [6] bluff-body stabilized flame intermittently 

experienced large-scale alterations that greatly distorted the flame. Multiple researchers have since verified this flow 

field transition [5] and provided mechanistic explanations [7], [8] for its occurrence. Localized flame extinction grows 

rapidly in this state and complete flameout transpires shortly thereafter. 

 

Elevated gas flares, where natural gas is transported through a tower and burned as an unconfined, nonpremixed flame, 

are the most common flaring configuration. This approach typically includes one or more pilot flames located at the 

gas flare’s tip. These pilot flames provide a continuous ignition source that helps stabilize the nonpremixed flame 

against adverse conditions, such as high winds, extremely high or low fuel flow rates relative to the flow of available 

oxidizer, or over dilution by steam or air. Although many of the previously discussed flame stability concepts are 

applicable to elevated gas flares, the need to rapidly mix fuel and air introduces added complexity and significant 

differences in near-flameout behavior. For instance, nonpremixed flames lift off the burner outlet as flameout is 

approached, whereas upstream propagating extinction processes cause the burner outlet to be where bluff-body 

stabilized premixed flames are last observed prior to flameout. Furthermore, there are unique mechanisms by which 

nonpremixed flames can locally extinguish and re-ignite. These include local extinction by excessive scalar dissipation 

rates [9] and re-ignition through advecting flame kernels [10] or propagating edge flames [11]. 

 

Flame monitoring and flameout forecasting have historically been conducted by applying heuristic methods to kHz 

rate chemiluminescence and/or acoustic data. One of the most commonly used approaches is Thiruchengode’s [12] 

double threshold method, which identifies extinction processes as instances where the time series data descends below 

and then recovers above two thresholds. These thresholds are essentially a percentage of either the local mean or root 

mean square of the data that are determined using several established criteria [13]. Other techniques involve 

monitoring various statistical features of the data relative to a threshold. For example, Yi and Gutmark [14] tracked 

the normalized root mean squared error of filtered chemiluminescence data. Alternatively, Unni and Sujith [15] used 

the rate of recurrence, which is the proportion of pairs of data points whose distance is greater than some threshold, to 

assess their combustor’s performance from acoustic data. Mondal et al. [16] developed a hidden Markov model 

approach that avoids the arbitrariness that exists with threshold-based methods. However, their method relies instead 

on phenomenological insights that are specific to certain operating conditions in their particular combustor geometry. 

 

This study presents a statistically rigorous method for detecting precursors to flameout in natural gas flares. It is based 

on a data analytics methodology that was developed by Peters et al. [17] and originally applied to data from swirl-

stabilized spray flames. In the current work, the data analytics method was applied to quantitative temperature and 

acoustics measurements that were taken in an industry relevant gas flare test rig. It involved first filtering these data 

with a time series model and then identifying statistical irregularities, or “alarms”, using a fault detection algorithm. 

These alarms can then be used to make appropriate modifications to the operation of a gas flare such that the 

combustion efficiency is increased and unburned methane emissions are avoided. 

III. Experimental Setup 

Gas Flare Test Rig 

The experimental data in this study was acquired from a Zeeco UFAA-4 Air-Assisted Flare Tip Assembly with a 800-

000-0049 HSLF-Z-HEI Flare Pilot Assembly. This 4 inch diameter air-assisted gas flare, which shown in Figure 1, 

included a continuously burning pilot flame, flame stabilization tabs, and dilution air jets for smokeless burning. The 

gas flare tip was rigidly mounted to an I-beam that kept the flare fixed during operation. The I-beam was welded to a 

steel pallet that served as the foundation for the test rig. 

 

Air-assisted flares are often preferred by end users because they produce smokeless flames. 22 g/s of assist air was 

therefore supplied to the test rig by a diesel-fueled Atlas Copco XAS 400 JD portable air compressor. The air mass 

flow rate was measured using a Coriolis meter. The assist air was injected through 7 air jets that were located around 

the periphery of the flare’s burner tube. All fuel-air mixing happened downstream of the burner tube outlet where the 
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air assist jets impinge on the fuel jet from the main burner tube and stimulate mixing with themselves and the ambient 

air. Compressed methane cylinders were the fuel source for the gas flare test rig. A three-cylinder manifold supplied 

the main fuel to the flare, and the pilot flame was fueled by a separate compressed methane cylinder. An Alicat mass 

flow controller with a 1500 SLPM maximum capacity controlled the fuel flow from the three-cylinder manifold. The 

main flow of methane ranged between 180-350 SLPM across the studied operating conditions, and the pilot methane 

pressure was held constant at 50 psi. An electrical box housed a Zeeco High Energy Ignition (HEI) module. The HEI 

module acted as the ignition source for the experiments by repeatedly discharging 2J sparks to the pilot. Once the pilot 

flame ignited, the HEI module was disabled and the spark discharge stopped. Fuel flow through the main tube then 

commenced and was ignited by the pilot flame. The flame exhibited a bright orange color at this stage. Lastly, the 

assist air was delivered to the flare and the flame achieved the intended smokeless burning mode of operation. 

 

The gas flare experiments were conducted in a controlled manner that 

provided appropriate training and test data for the data analytics 

method. This involved acquiring acoustic data and absorption 

spectroscopy measurements at 5 operating conditions with varying 

combustion efficiencies: V̇CH4=180 SLPM, V̇CH4=200 SLPM, 

V̇CH4=250 SLPM, V̇CH4=300 SLPM, and V̇CH4=350 SLPM. The 

operating conditions were selected such that the flame gradually 

progressed from a stable burning condition toward FO, as outlined 

below: 

1. Stable burning condition (V̇CH4=350 SLPM) – according to 

accepted industry standards, a stable burning flame is 

expected to have 98% combustion efficiency. Since a stable 

flame could presumably burn indefinitely without 

experiencing FO, these data were used to train the data 

analytics method. 

2. Intermediate conditions (V̇CH4=200, 250, 300 SLPM) – the 

fuel flow rate was progressively reduced in stepwise 

increments for each condition between stable burning and 

FO. The combustion efficiency will begin to decrease in this 

regime and continue decreasing monotonically the nearer 

the flame gets to FO.  

3. Near FO condition (V̇CH4=180 SLPM) – any minor 

reduction in the fuel flow rate will likely cause FO at this 

near-limit operating condition. The flame burns here with a 

low combustion efficiency relative to the stable burning 

case, and unburned methane emissions are expected in the 

flame’s exhaust. These measurements served as test data for 

the data analytics method. 

 

The experiment was repeated ten times for each of the previously described operating conditions. 30 seconds of data 

were acquired for each test case. An additional test case was also acquired that pushed the gas flare test rig to its 

operational limit (i.e., V̇CH4<180 SLPM). The FO process occurred during this test case and 100 seconds of data were 

recorded that captured the transient effects associated with this phenomenon. All experiments were performed 

outdoors at Georgia Tech to include the environmental factors that affect real world flare systems. A Davis Instruments 

Vantage Vue local weather station operated on site with the flare to accurately measure the ambient weather conditions 

during the experiments. Differences in ambient conditions between the test cases were relatively minor and they are 

not believed to have influenced the results of this study. 

 

Optical Gas Imaging (OGI) 

OGI cameras were specified as the tool of choice for monitoring methane emissions at flare sites in the EPA’s 

December 2023 rule [3]. The FLIR GFx320 is an EPA certified OGI camera model that was used in this study for the 

dual-purpose of imaging the flame and detecting unburned methane in the exhaust plume. The FLIR GFx320 is a 

cooled camera model that is designed to detect methane in the 3.3-3.4 μm absorption band. The internal cooling 

 

Figure 1: Picture of the Georgia Tech 

gas flare test rig. The air-assisted flare 

tip was manufactured by Zeeco. 
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features of the GFx320 allow it to detect methane leaks at rates as low as 0.6 g/hour. OGI camera images were acquired 

at 15 Hz throughout the duration of each experimental test case using the camera’s high sensitivity mode. 

 

The underlying principle of OGI cameras is that methane absorbs IR radiation over a specific wavelength range (i.e., 

3.3-3.4 μm). By spectrally filtering the camera to only detect IR radiation over a specific wavelength range, the camera 

can detect a contrast between methane, which does absorb the background radiation, and the remaining gas that does 

not. Unfortunately, hot combustion products create a high degree of ambiguity surrounding the interpretation of OGI 

camera images from flares. This happens because hot combustion products create sharp changes in the index of 

refraction of the imaged gas that interfere with the operating principles of the camera. As will be discussed in greater 

detail below, this interference made identifying both unburned methane emissions and flameout difficult. 

 

PCB Microphones 

Unsteady gas expansion [18] associated with the heat release process from combustion causes turbulent flames to 

radiate sound in all directions. Turbulent flames can therefore be considered an acoustic monopole with an amplitude 

that is proportional to the heat release rate integrated across the entire flame volume. This study’s approach relied 

heavily on acoustic measurements because they effectively measure the combustion process throughout the entire 

flame and avoid the field of view issues that accompany light-based sensors. Furthermore, changes in a flame’s heat 

release as FO is approached will consequently alter the acoustic radiation from the flame and allow the combustion 

efficiency to be qualitatively assessed. The acoustic data were acquired using (4) PCB microphones (see Figure 2) 

that were located around the flame and sampled at 20 kHz. 

 
Tunable Diode Laser Absorption Spectroscopy (TDLAS) 

 

In addition to the microphone data, temperature measurements were simultaneously acquired in the flame at a height 

of 4 inches above the flare tip (see Figure 2). These quantitative, path-integrated temperature measurements were 

performed using tunable diode laser absorption spectroscopy (TDLAS). This technique relies on the principle of 

quantum mechanics that certain gases absorb radiation at specific wavelengths in a temperature dependent manner. 

TDLAS measures the amount of intensity that is absorbed as a laser beam passes through a test gas. This absorption 

measurement is repeated across a relevant wavelength range as the wavelength of the laser is swept. A Thorlabs 

SL131050-SP1 MEMS-tunable vertical cavity surface emitting laser (VCSEL) was used in this study to measure the 

temperature of H2O molecules by sweeping across the wavelength range 1330-1365 nm. These temperature 

measurements were acquired at 1 kHz across a 9.5 inch beam length. The measurement height above the flare tip was 

chosen for two reasons. First, this location was near the pilot flame and was therefore critical for flame stabilization. 

Second, the OGI camera imaging indicated that the flame always occupied this position regardless of the crosswind 

velocity.  

 

 
Figure 2: Setup of sensors for acoustic and absorption spectroscopy measurements in the Georgia Tech gas 

flare test rig. 

 

The gas temperature can be determined from the absorption data using a similar procedure to the Kranendonk et al. 

method [19]. Specifically, the Beer-Lambert law is used to determine the amount of intensity that is absorbed as a 
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laser beam passes through a test gas. A reference laser beam is used to correct for absorption by ambient H2O 

molecules in the test gas data. These experimental absorption data can then be converted to temperature and H2O 

concentration values by fitting them to simulated absorption spectra. 

IV. Data Analytics Method 

The Peters et al. [17] data analytics method was used in this study to detect precursors to flameout. A brief description 

of the method is included here and a more detailed account can be found in the original paper by Peters et al. [17]. 

This method involves first using a time series model to transform the acoustic and absorption data to a white noise 

process, which is an uncorrelated process with zero mean and constant variance. This step is important because it 

filters nonstationary behavior and serial correlation from the data that would otherwise cause an unacceptable number 

of false alarms to be detected. A fault detection algorithm was then used to identify statistical irregularities in the 

filtered data that increase in frequency as flameout is approached. 

 

An ARIMA(2,1,1)-IGARCH(1,1) time series model is used to filter the data, as detailed below: 

 

∇𝑋𝑖 = 𝜇 + 𝜙1∇𝑋𝑖−1 + 𝜙2∇𝑋𝑖−2 + 𝜃1𝑎𝑖−1 + 𝑎𝑖 (1) 

𝜎𝑖
2 = 𝑉𝑎𝑟(𝑎𝑖|𝑎𝑖−1) = 𝛼0 + 𝛼1𝑎𝑖−1

2 + 𝜂1𝜎𝑖−1
2 , 𝛼0 > 0, 𝛼1, 𝜂1 ≥ 0, 𝛼1 + 𝜂1 = 1 

The first line in Equation 1 denotes the Autoregressive Integrated Moving Average (ARIMA) portion of the model. 

In this equation, ∇𝑋𝑖 = 𝑋𝑖 − 𝑋𝑖−1 is the difference in the absorption temperature data at consecutive sampling intervals 

(i.e., 1 msec for 1 kHz measurements). Since a single differencing operation is performed on the raw temperature data, 

the I term is 1. However, the I term is set to zero for the acoustic data because it naturally has zero mean. The AR term 

refers to the dependence of ∇𝑋𝑖 on the previous two sampling intervals, and the MA term refers to the dependence of 

∇𝑋𝑖 on the model residual at samples 𝑖 − 1. The order of the model was selected via the Hyndman-Khandakar 

algorithm [20]. To account for the increasing signal-to-noise ratio in the data as FO is approached, the conditional 

variance of the model residuals 𝑎𝑖 , 𝑖 = 1,2, … is modeled using an Integrated Generalized Autoregressive Conditional 

Heteroscedasticity (IGARCH) process of order (1,1). This algorithm, which is expressed in the second line in Equation 

1, is designed to model processes with short bursts of increased variation. By imposing the constraint that the 

coefficients sum to one, IGARCH can model processes with a trend in the variability.  

 

The data filtering step consists of a training phase and a testing phase. In the training phase, the ARIMA-IGARCH 

model is fit to training data that were taken at V̇CH4=350 SLPM when the flame is stable. The ARIMA-IGARCH 

parameters (i.e., μ, ϕ1, ϕ2, θ1, α0, α1, and η1 from Equation 1) are then averaged over all 10 training (i.e., V̇CH4=350 

SLPM) realizations to construct a global time series model. This global model is then used in the testing phase to 

transform a test case of acoustic or temperature data to a white noise process, which properly prepares it for the fault 

detection algorithm. 

 

Statistical irregularities in the filtered data were identified using a fault detection algorithm known as an EWRMS 

control chart. The Exponentially Weighted Root Mean Squared-error (EWRMS) control chart was originally 

developed by MacGregor and Harris [21] to detect changes in a process’ variance. The algorithm converts the filtered 

data to a series of characteristic values whose quality depends on their magnitude relative to certain control limits. 

Faults, or “alarms”, are instances where the quality characteristic exceeds the control limits. If the control limits are 

set appropriately, they should not be exceeded by the stable burning cases. 

 

The EWRMS control chart is implemented by first averaging small batches of the filtered test data. 

 

𝑍̅𝑘 = 𝑏−1 ∑ 𝑍𝑖

𝑏𝑘

𝑖=𝑏(𝑘−1)

(2) 

In Equation 2, 𝑍̅𝑘 denotes the average value of the filtered test data in each batch, 𝑏 is the batch size, and Zi is the 

original array of filtered test data. This step helps ensure that the inputs to the EWRMS control chart are normally and 

independently distributed with zero mean and unit variance, which is an underlying assumption of the algorithm. The 

quality characteristic at batched index 𝑘 is computed as follows: 

𝑆𝑘 = √(1 − 𝛾)𝑆𝑘−1
2 + 𝛾𝑍̅𝑘

2, 𝑘 = 1,2, … , ⌈𝑏−1𝑇𝑛⌉ (3) 
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where 𝛾 is a constant (0 < 𝛾 ≤ 1) that determines the amount of weight placed on the memory of the quality 

characteristic and ⌈∙⌉ is the round up operator. In this study, 𝛾 = 0.2, 𝑏 = 20, and 𝛽 = 0.0027. For a predetermined 

false alarm rate 𝛽, the upper and lower control limits for each individual series of data points are equal to the 100(1 −
𝛽)th and 100𝛽th percentiles of the quality characteristic, respectively. The global control limits are then computed by 

averaging the individual control limits for each of the ten V̇CH4=200 SLPM and/or V̇CH4=250 SLPM realizations. 

V. Results 

It is the authors’ position that this study presents a much more effective flare monitoring strategy than OGI cameras. 

It will be shown below that the data analytics method accurately captures the localized flame extinction/re-ignition 

processes that precede FO and are evidence of a decreased combustion efficiency. Furthermore, FO was easily 

identifiable in the acoustic and absorption temperature measurements. In contrast, the results that will be discussed in 

this section raise serious questions about whether OGI cameras can effectively accomplish the flare monitoring 

objectives of the EPA. Specifically, it was difficult to differentiate hot combustion products from unburned methane 

emissions in the GFx320 images.  

 

Figure 3: Average GFx320 images at a) V̇CH4=350 SLPM and b), c) V̇CH4<180 SLPM. Image b) comprises 

V̇CH4<180 SLPM data taken before FO occurred and image c) is from the same test case after FO occurred.  

Average images from the GFx320 for a stable burning case (V̇CH4=350 SLPM) and a test case where FO occurred 

during the data recording (V̇CH4<180 SLPM) are shown in Figure 3a) and Figure 3b), respectively. The primary 

differences between these images are the length of the flare plume, the amount of bending that it experiences, and the 

distinctiveness of the plume boundary. Although inconclusive, the distinctiveness of the plume boundary may be the 

best available indicator of combustion efficiency. As was discussed previously, hot combustion products create sharp 

index of refraction gradients that appear much like unburned methane emissions in the OGI camera images. One way 

to differentiate these two sources of OGI camera signal is to examine their intensity far away from the flare. The index 

of refraction gradients will fade as the combustion products advect away from the flare and cool, whereas the methane 

emissions will persist until their concentration drops below a detectable level. A test case with a low combustion 

efficiency would therefore have higher intensity OGI camera signal far from the flare. Furthermore, a decreased 

combustion efficiency would blur the boundary between the far field region, where the camera primarily detects 

unburned methane emissions, and the near-flare region, where the camera also detects undesired signal from sharp 

index of refraction gradients. Since unburned methane emissions are presumably greater for the V̇CH4<180 SLPM case 

than the V̇CH4=350 SLPM case, this may explain why the plume boundary is more clearly defined in Figure 3a) than 

in Figure 3b). In summary, although some inferences can be made about combustion efficiency from these images, 

they are largely ambiguous because hot combustion products interfere with the working principles of the camera.  

 

The GFx320 was particularly ineffective at identifying FO occurrences. Figure 3b) and Figure 3c) show two average 

OGI camera images that were taken by the GFx320 during the V̇CH4<180 SLPM test case where FO occurred. Figure 

3b) is averaged over all frames before FO and Figure 3c) is averaged over all frames after FO. The primary difference 

between these average images is that the “trail” of emissions is narrower in Figure 3c) (after FO) than in Figure 3b) 
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(before FO). However, these differences are minor and would be difficult to notice without prior knowledge of which 

image represents the weakly burning flame (Figure 3b) and the jet of unburned methane (Figure 3c).  These subtleties, 

combined with the high dimensional information of spatially and temporally resolved camera data, present significant 

challenges to using such data for continuous on-line monitoring of combustion efficiency or FO onset. 

 

The Experimental Setup section describes a test matrix that systematically moved the gas flare test rig from stable 

burning to FO, with the rig being “parked” at discrete test points along this path. Absorption and acoustic 

measurements were taken at each of these test points. Figure 4 shows the absorption temperature time series for a 

stable burning case (V̇CH4=350 SLPM) and a near-FO case (V̇CH4=180 SLPM). Clear differences can be observed in 

the mean and variance between these data. The temperature values for the stable burning case have a mean that is 

approximately 300 K greater than the near-FO case and display regular fluctuations about the mean. Alternatively, the 

near-FO temperatures exhibit irregular bursts where the temperature values temporarily approach those of a stable 

flame. It should also be noted that the temperature values in this plot are much lower than typical adiabatic flame 

temperatures. This is because TDLAS is a path-integrated technique that also includes contributions from cool H2O 

molecules that were present along the beam path. Furthermore, Figure 5 shows the average temperature measured by 

TDLAS for each of the different fuel flow rates. These results have been averaged over each of the 10 realizations 

corresponding to the different fuel flow rates. On average, the absorption temperature is ~160 K greater at the stable 

V̇CH4=350 SLPM condition than the near-FO V̇CH4=180 SLPM condition. However, there is only a ~50 K difference 

in average temperature between the V̇CH4=250 SLPM and V̇CH4=350 SLPM cases with a steep decline in the average 

temperature thereafter.  

  

Figure 4: Temperature time series corresponding to a stable burning case (V̇CH4=350 SLPM) and a near-FO 

case (V̇CH4=180 SLPM).  

 

 

Figure 5: The average temperature as measured by TDLAS shown as a function of the CH4 volume flow rate. 
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In contrast to the OGI camera, the acoustic and temperature measurements proved to be very effective for identifying 

FO. The absorption spectroscopy data is valuable because it provides quantitative temperature measurements at a local 

region of interest, and the acoustic data effectively “sees” (detects) unsteady flame dynamics throughout the entire 

flame volume. Furthermore, these kHz rate measurements are able to resolve the FO transient. Figure 6 shows the 

acoustic and temperature time series corresponding to the FO occurrence test case (i.e., the V̇CH4<180 SLPM test case 

discussed in Figure 3). It is immediately apparent from these time series that FO occurred 48 seconds into the 

recording. FO can be identified by the sharp change in amplitude in the acoustic data and by the sudden decrease to 

400 K temperature values in the absorption data time series.   

 
Figure 6: a) acoustic and b) temperature time series from the V̇CH4<180 SLPM test case where FO occurred 

during the data recording. 

 

Combustion inefficiencies were identified in the absorption and acoustic data using the Peters et al. [17] data analytics 

methodology. Figure 7a) shows outputs from the data analytics method when the absorption temperature data are used 

as inputs. Results are shown for two individual cases: one stable burning case with V̇CH4=300 SLPM and one near-FO 

case with V̇CH4=180 SLPM. The red lines represent control limits, and alarms are identified by magenta symbols in 

Figure 7. A key takeaway from this plot is that the V̇CH4=300 SLPM data never exceeds the control limits, whereas 

several alarms were activated by the V̇CH4=180 SLPM data. This was expected since the flame burned in a stable 

manner at V̇CH4=300 SLPM and it operated on the threshold of flameout at V̇CH4=180 SLPM.  

 

Figure 7: a) control chart based on absorption data from a stable V̇CH4=300 SLPM case and a near-FO 

V̇CH4=180 SLPM case. b) The absorption temperature time series corresponding to the V̇CH4=180 SLPM case 

shown in plot a). Alarms are represented by magenta symbols in this figure.  



10 

 

One can appreciate the physical meaning that underlies alarms from the data analytics method by considering where 

they are situated in the absorption temperature time series. Figure 7b) plots both the absorption temperature time series 

and the alarms corresponding to the V̇CH4=180 SLPM case that was analyzed in Figure 7a). It is clear from Figure 7b) 

that sudden fluctuations in the temperature time series are required to activate an alarm. These alarms, therefore, likely 

represent combustion inefficiencies in the form of localized extinction and re-ignition processes, which are known 

from accepted flame stability theory to precede complete flameout [5]. Two remaining points about the data analytics 

method should also be noted. First, the method does not differentiate between rapid spikes (re-ignition) and dips 

(extinction) in the absorption time series data; both will activate alarms. Second, gradual temperature changes were 

occasionally observed in the V̇CH4=180 SLPM data (e.g., between 3-7 seconds in Figure 7b) that did not directly 

activate alarms. They do, however, indirectly affect the alarm rate because they create conditions where localized 

extinction/re-ignition occurrences are likely.  

 

Figure 8: Average number of alarms/second that occurred during the measured a) absorption and b) acoustic 

time series. Results are shown for the different test cases, which are represented by their CH4 volume flow rate.  

The average number of alarms that were detected by the data analytics method was found to increase as V̇CH4 was 

decreased. Figure 8 plots the average number of alarms/second for each of the various V̇CH4 test cases. Results are 

shown for both the absorption temperature data in Figure 8a) and the acoustic data in Figure 8b). Beginning with the 

absorption temperature data, alarms were only very rarely activated until V̇CH4=200 SLPM. The average alarm rate 

then increases sharply and peaks at the V̇CH4=180 SLPM condition. Similar trends were observed when the data 

analytics method was applied to the acoustic data. However, the average acoustic alarm rate increases more gradually 

as V̇CH4 is decreased. For example, the average number of alarms/second is only slightly greater at V̇CH4=200 SLPM 

than at V̇CH4=250 SLPM. In practice, a high frequency of alarms would notify a flare operator that changes to the 

combustion system must be made to avoid FO and restore a high combustion efficiency. Furthermore, Figure 8 is 

valuable for identifying the safety margin above FO where a high combustion efficiency will be maintained and 

unburned methane emissions avoided. 

 

The physics of the flameout process endow the data analytics methodology that is presented here with a forecasting 

capability that allows low combustion efficiency operation to be resolved before FO transpires. According to accepted 

flame stability theory [5], a flame’s combustion efficiency will monotonically decrease as it progresses from stable 

burning to FO. This was demonstrated in Figure 8 where the average number of alarms/second increased 

monotonically as flameout was approached. Furthermore, Figure 9a) shows the control chart corresponding to the 

time series data that was presented in Figure 6, which was from the V̇CH4<180 SLPM test case where FO occurred 

during the measurement acquisition process. Results for the absorption temperature data are shown in blue with red 

control limits and results for the acoustic data are shown in yellow with green control limits. A histogram of the alarm 

rate is shown in Figure 9b) to illustrate how the alarm rate evolves in time. The following key conclusions can be 

reached from Figure 9: 

1. Clusters of absorption alarms (magenta symbols) tend to appear during time intervals when acoustic alarms 

(black symbols) are also most densely concentrated. The acoustic alarms are more common, however, as they 

are activated in many instances when the absorption data is well within the control limits. This demonstrates 

how both sets of measurements provide complimentary information. The acoustic data effectively “sees” 

(detects) unsteady flame dynamics throughout the entire flame volume whereas the absorption measurements 

provide quantitative temperature data at a local region of interest.  
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2. Both the acoustic and absorption alarms increase in frequency as FO is approached. This is consistent with 

the results that were shown in Figure 8 and expectations from flame stability theory of decreased combustion 

efficiency as FO is approached. These results provide further evidence that the alarms actually represent 

localized flame extinction/re-ignition processes and thereby signal when FO is imminent. 

3. Flameout occurs 3-4 seconds after the alarms reach their peak frequency. This is a more gradual process than 

what was observed in the authors previous work [17] on swirl-stabilized spray flames. In this previous study, 

the flame globally extinguished almost immediately after the alarm frequency peaked.  

 

Figure 9: a) control chart based on both absorption and acoustic data from the V̇CH4<180 SLPM test case where 

FO occurred during the data recording. b) Histogram of the alarm rate as a function of time for both data 

types. 

VI. Conclusions 

The primary objective of this study was to apply a data analytics methodology to experimental temperature and 

acoustics measurements for the purpose of maintaining a high combustion efficiency in gas flares. The experimental 

data were acquired in a representative gas flare test rig that was developed at Georgia Tech based on a Zeeco 

manufactured air-assisted flare tip. The test matrix included stable burning data, data acquired when the flame operated 

on the threshold of flaming out, and intermediate conditions between these extremes. Data were also acquired from a 

test case where the FO process occurred during the experiment, which allowed the transient effects of this phenomenon 

to be captured. An EPA certified optical gas imaging (OGI) camera was used to visualize the flame and observe 

unburned methane emissions during the measurements. Although some inferences could be made about combustion 

efficiency from these images, they were largely ambiguous as hot combustion products interfered with the working 

principles of the camera. On the other hand, the data analytics method clearly identified local flame extinction/re-

ignition processes from kHz rate acoustic and absorption spectroscopy data. These localized extinction/re-ignition 

processes were found to monotonically increase in frequency as flameout was approached. The data analytics method 

was therefore shown to be a powerful tool for predicting flameout and identifying operational regimes where a gas 

flare will maintain a high combustion efficiency. Taken together with the authors’ previous work [17] on swirl-

stabilized spray flames, these results demonstrate that the data analytics method presented here is an effective 

combustion efficiency monitoring tool that is generalizable across a variety of different combustion systems (e.g., 

premixed, nonpremixed, or liquid-fueled), combustor geometries, or operating conditions. 
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